Exoplanet Science with a Microlensing Survey: Potential of the NRO Telescope and Trade Considerations

1st AFTA SDT Meeting

Scott Gaudi & Matthew Penny
The Ohio State University

Science Motivation.

Planet Formation.

Must understand the physical processes by which micronsized grains in protoplanetary disks grow by 10^{-13-14} in size and 10^{-38-41} in mass.

Hard!

Strange New Worlds.

Kepler is revolutionizing our understanding of exoplanets here!

Understanding Habitability.

Knowledge of Demographics Beyond the Snow Line is Required.

- Water comes from outer solar system.
 - For in situ formation, material that accreted to form rocky planets in the HZ was likely dry.
- Inner and outer regions coupled.
 - Giant planets likely formed first.
 - Presence (or not) and properties of outer gas giants has a significant effect on inner planets

To the snow line... and beyond!

Microlensing.

Microlensing Basics.

The Good and the Bad (and the Ugly).

- The Good.
 - Sensitive to:
 - Planets beyond the snow line.
 - Free-floating planets.
 - Very low-mass planets.
 - Large signals.
- The Bad.
 - Rare and Unpredictable.
 - Short time scale.
- The Ugly.
 - Difficult (but not impossible!) to estimate primary mass.

Requirements.

- Monitor hundreds of millions of bulge stars continuously on a time scale of ~10 minutes.
 - Event rate ~10⁻⁵/year/star.
 - Detection probability ~0.1-1%.
 - Shortest features are ~30 minutes.
- Relative photometry of a few %.
 - Deviations are few 10%.
- Main sequence source stars for smallest planets.
- Resolve background stars for primary mass determinations.

Ground vs. Space.

- Infrared.
 - More photons.
 - More extincted fields.
 - Smaller sources.
- Resolution.
 - Low-magnification events.
 - Isolate light from the lens star.
- Visibility.
 - Complete coverage.
- Smaller systematics.
 - Better characterization.
 - Robust quantification of sensitivities.

The field of microlensing event MACHO 96-BLG-5 (Bennett & Rhie 2002)

Science potentially enabled from space: sub-Earth mass planets, habitable zone planets, free-floating Earth-mass planets, host star characterization.

Yields.

- Yields determined by:
 - Total number of stars monitored.
 - Photon rate.
 - Total observing time.
- Primary hardware dependencies:
 - FOV.
 - Aperture.
 - Bandpass (total throughput + red cutoff).
 - Resolution (background).
 - Pointing constraints.
- Secondary hardware dependencies:
 - Data downlink.

Characterization.

- Characterizing lens stars:
 - Measure angular source size.
 - Resolve unrelated stars.
 - Measure proper motion or centroid shifts.
 - Measure parallax.
- Primary hardware dependencies:
 - Second filter.
 - Effective resolution.
 - PSF stability.
 - Baseline of observations.
 - Aperture.
 - Dwell time.
- Secondary hardware dependencies:
 - Shutter changes.

Yields: NRO vs DRM1 vs DMR2.

M/M _{Earth}	DRM1	DRM2	NRO
0.1	30	29	82
1	239	279	379
10	794	918	1322
100	630	733	1067
1000	367	442	509
10,000	160	199	205
Total	2221	2600	3564

- Total time = 432 days, same FOV.
- Yield ~propto FOV
- Yield ~propto (photon rate) $^{\alpha}$, with α ~0.3 to 1.2
- DRM2 versus DMR1:
 - DMR2 FOV 1.55 larger, photon rate 0.72 of DMR1
- NRO versus DRM1:
 - DMR1 FOV = NRO FOV, photon rate 2.28 times DMR1
 - Assumes same FOV and some total observing time!

Better Yield Estimates.

- Current running new simulations:
 - Based on Besançon model.
 - Using different pixel sizes.
 - 1.5µm cutoff.
- Preliminary results
 - 40-50% higher yields for massive planets.
 - Substantially larger yields for low-mass planets.

Resolution.

Characterization.

- Better resolution:
 - Fewer unrelated blends.
- And more photons:
 - Better centroid accuracy.
 - Better shape measurements.
 - Smaller proper motions.
- Currently proceeding with Fischer matrix + analytic estimates.

Issues.

- Event rate normalization and distribution.
- Field Optimization.
- Data Rate.
- Red cutoff.
- Habitable Planets?

Limits: Habitable Planets.

 Habitable zone is well interior to the Einstein ring radius for most lenses.

$$\frac{R_{HZ}}{R_E} \sim 0.3 \left(\frac{M}{M_{\odot}}\right)^{-3/2} \left[x(1-x)\right]^{1/2}$$

- Minor image perturbations.
- More sensitive to source size.
- Require better precision.
- Can be made up by more time through the "x" factor.

$$R_E = \theta_E D_l \sim 3.5 \,\text{AU} \left(\frac{M}{M_\odot}\right)^{1/2} \left[x(1-x)\right]^{1/2}, \ x \equiv \frac{D_{ol}}{D_{os}}$$

(Park et al. 2006)